
UNCLASSIFIED

An288 053
Reproduced

Inf. ike

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

iO ON DiAGONALIZATION METHODS
O IN INTEGER PROGRAMMING
00
00 by
W R. Van Slyke and R. Wets

I -?
lei *

«at '"'"

OPERATIONS RESEARCH CENTER

INSTITUTE OF ENGINEERING RESEARCH

^ -/ -^

RESEARCH REPORT 27
1 August 1962
I. E. R. 172-32 y

i I

A S 1 i A

Nüv 15 1962

TIOIA 3

UNIVERSITY OF CALIFORNIA- BERKELEY

ON DIAGONALIZATION METHODS IN INTEGER PROGRAMMING

by

Richard Van Slyke and Roger Wets
Operations Research Center

University of California, Berkeley

1 A,ugust 1962 Research Report 27

This research has been partially supported by the Office of Naval Research
under Contract Nonr-2Z2(83) with the University of California. Reproduc-
tion in whole or in part is permitted for any purpose of the United States
Government.

ON DIAGONALIZATION METHODS IN INTEGER PROGRAMMING

by Richard Van Slyke and Roger Wets

I. Introduction

An important area for improvement in existing integer programming

codes is in the easy generation of efficient cutting hyperplanes; in this paper

we approach this problem using a triangular canonical form. In the first

part we give an algorithm based on Gomory's all-integer integer program-

ming algorithm J , which constitutes a first step in this direction. This

procedure is a practical analog of a deepest cut method discussed in the

second part of the paper. In Appendix A, a brief outline and flow diagram

for the algorithm are given; finally the algorithm and the deepest cut prob-

lem are illustrated by examples in appendices B and C.

We assume that we have at hand an integer program where all the

coefficients and constant terms are integers. The functional is to be

maximized. We write the problem in a parametric form due to Tucker:

Maximize x0 subject to x. integer, j = 0, . . . , n; x. > 0 ,

j = 1, n; and

X0 = bo + coto +Citi + • • • • -^Vk

(1)
xl = bl + »10*0 +alltl +•••■+ alktk

x = b + a .t- + a , t, + + a , t-, m m mO 0 mil mk k

It will be convenient to assume that the above system has the property

that if Xn, x,, x are non-negative integer variables then tn, . .. , t,

must also be non-negative integer variables. We can guarantee this, in

general, by adding the trivial relations x. - = t.f i = 0, . . . , k. In this

case the problem will be of the form:

Maximize xQ subject to x. non-negative integers, j = l,...,n; and

x0 = b0 + c0t0 + c1tl + . . . + cktk

xl = ^ *
x2 = *!

(!')

xk+l = ' ^

^k+Z = bk+2 + ^+20*0 + ^+21*1 + • • • + ^+2^

x = b + a „t_ + a . t, + + a , t, n n nO 0 nil nk k

If in this problem b. > 0, i = 1, 2, . . . , n and c. < 0 for j = 0, 1, . . ., k

the solution obtained by setting tf.=t1 =... = t, = 0 is optimal.

It can be assumed without loss of generality that for bounded problems

the problem is in a dual feasible form, such that c. < 0 for all j. A quite

general method for accomplishing this is discussed in a paper by Dantzig,

Ford and Fulkerson: i

Two Useful Operations

We now describe two basic operations which will frequently be used:

a) The Cut: Suppose

(2) x. = b. + a.-t- + a.-t, + . . . + a.^t. + . . . + a., t, i x lO 0 il 1 ii i ik k

is an equation of (1). Let

-2-

J+ = |j : a.. > 0 i and J"= | j : aj. < 0 l

If x. is to be a non-negative variable we have the following:

0 < x. = b. + > a..t. + > a..t. < b. + > a..t.

+ - + jeJ jeJ jeJ

If

(3) r = b. + ^ ...t.

JeJ+

then T is a non-negative integer valued variable. Using (3) we could

eliminate one of the t's appearing in (3), say t- in (1) in favor of T.

If, moreover, a.. = 1 making the substitution t- = T - b, - / a..t.
xi 6 J* i Z^ lJ J

JeJ+-{i}

in (1) would leave the tableau in integers.

x0 = b0 + VO + • • • + ci (^T - b. - 2 aijtj) + • • • + ^O^k

JeJ+-{i}

u(T-bi- I
J€J+-{i}

x, = b, + a.-trt + . . . + a, . (T - b. -) a..t.)+...+ a,, t, 1 1 10 0 It \ i Z, iJ J y ik k

x = b + a „t- + . . . + a „ T - b. -) a. .t, + . . . + a . t. n n nO 0 nt \ i /, ij J / nk k

jeJ+.{i}

If a.. > 1, then

b. r-~ a..
(3-)

JeJ+

aii ^. aii J

is still a non-negative integer variable where-b. and a., are the smallest

integers greater than -b. and a.. , respectively, which are divisible by

a..., where (a.../a...) = (a../a..) = 1, so if a... > 1, we can use (31) and

maintain the tableau in integers.

To minimize the notation after the substitution we simply let T be

represented by t. in the tableau. In general we only use the substitution

(3) or (3') when b. < 0 and in this case call it a cut because the restriction

T > 0 restricts the values that t- t, can take on, e.g., t» = t, = ... = t, =0

is not a feasible solution.

b) The Column Operation: On the other hand if we define T =) o-.t. ,
 Zl J J

j
where a- are non-negative integer parameters and a. = i, and substitute

J

for t-, we are in fact performing a column operation, because formally the
fVi

substitution is equivalent to subtracting a. times the i column of coef-

ficients of (1') from the i column of (1') for i =0, l,...,i-l,i+l,...,k.

We note that this is of the form of a cut with b. = 0. The only thing we have

to be careful about, in making these substitutions for cuts and column opera-

tions is that the optimality condition for the transformed tableau is the same

as for the original; more specifically that x,, . . . ,x > 0 and integer

implies that the current t«, . . . , t, are non-negative integer parameters.

This is easy to verify remembering that the original tableau had this property

and that each new parameter is a non-negative integer weighted sum of

-4-

II. The Basic Algorithm

Ralph Gomory's all-integer algorithm concerns itself basically with

making "cuts" in a systematic fashion until a transformed tableau of

integers is obtained from (1) with c. < 0, (j = 0, . , . , k), b. > 0, (i = 1, ... , n).

The question is how to generate the most efficient" cuts in some sense.

f2| Gomory has suggested1 J that the efficiency may be related to the lexico-

graphic magnitude of the pivot column in the sense that one should try to

minimize the magnitude of the pivot column. Whenever we attach adjectives

such as "best", "efficient", "deep" to the word "cut" we will always mean

it in this way.

1. The Algorithm.

Suppose our problem is in the form:

Maximize x_ where x. > 0, (j = l,...,n); and x. are integers (j =0,... , n)

subject to

x0 =b0 " ^

xl =bl + a10t0 " h

X2 ^ b2 + ^(^O + a21tl " t2 .

(5)

''k+l -bk+l + ak+l, 0*0 + ak+l, 1*1 + ^+1,2*2 + Vt-l

^+2 "bk-t2 + ak+2, 0*0 + ak+2, 1*1 + ^+2,2*2 + + ak+2,k+ltk+l

x = b + a ntn + a ^t, + a -.t^ + + a , , .t, , , n n n0 0 nil n2 2 nk+1 k+1

Then finding efficient cuts is relatively easy since the columns are already

ordered lexicographically. We seek a cut r = ß. + y a-t. for which the

j

-5-

last positive coefficient, which determines the pivot column, is as far to the

left as possible. This follows because we always insist on maintaining dual

feasibility. It is clear that the more "efficient" a cut, the fewer columns

(in general) will be affected by the pivoting. With this criterion in mind we

seek to generate the cuts. We will see in the next section that every problem

of the form (I1) and therefore of the form (1) can be put in the form (5).

We can consider, instead of a single equation, a sum of equations

weighted by positive integers to generate the cuts. To each equation say the
♦•Vi

i , with a negative constant term, we associate a most efficient cut in the

following sense:

(i) If

(a) the coefficient of t, .,a. , , is positive we add a. , , times

the k+1 equation to the i , if this keeps the constant term

b. + a. v.. ib, , negative, we go to (ii). If it makes the constant term
1 X, .K+1 Ic-r 1

non-negative then the original equation, the i , is associated with

itself.

(b) a. . . is negative or zero we proceed directly to (ii).

(ii) We now have a new linear combination of the t's where the

coefficient of t, , , is non-positive- Next we examine the coefficient of k+1 r

t, which is a. , + a. , .a, , . in case (a) or a. , in case (b). As in

(i), if the coefficient is negative or zero we go on to consider t, •■. If this

is not the case we add a. , + a. ^ , i3^, i ^ times the k equation if this

keeps the constant term negative. If it does not the current linear combina-

tion is associated with the i equation, and we stop.

(iii) We continue the process until either the constant term goes non-

negative and the process terminates or until a positive integer weighted

-6-

combination of equations is obtained in which the coefficient of every

t., (j ^ 0) is non-positive. If one obtains an equation with all coefficients

non-positive and with a negative constant term, there is no feasible solution.

In this way, we can associate to each equation with a negative constant term

another derived equation. We can then choose from the collection of

derived equations the one for which the last positive coefficient is farthest

to the left. From this equation we generate the cut. We then repeat the

whole process with the new tableau.

The convergence properties of this basic algorithm are closely

connected to those of Gonnory's all-integer algorithm1- J . For completeness

we review the proof. Because of the special nature of the tableau there

will always be a decrease in the constant term in some row above the

highest row with a negative constant term. This, plus the assumption that

a feasible solution exists, is enough to guarantee convergence. To see this,

we note that for each iteration we add a lexico-negative vector to the constant

column, so that the constant column is always decreasing lexicographically.

If we indicate by a superscript the iteration numbers for the constant terms,

we have for the constant term of the functional:

K(0) . , (1) . . Av) , (v+l) ^ . K{optimal, feasible)
D0 - 0 _ •' * _ D0 _ D0 _ • •' _ D0

where strict inequality can hold at most a finite number of times, i. e. ,

there is a VQ such that bg ' = bo for a11 v — v0' For if this were

not so, since h\. decreases by an integer each time, we would have

strict inequality and the functional value -would eventually become less than

the functional value of the assumed feasible solution, which is impossible

since x« < b» for every v. Now from i/0 on we examine bj {v > Vn)

They satisfy the condition b^0+1) > b!.1/0+2) > Suppose b^ does

■ 7-

not "settle down, " i. e., suppose strict inequality does not hold at most a

finite number of times, then eventually b, becomes negative. This is a

contradiction for the cut generated at this point would cause a strict de-

crease in b- which is impossible since v > i/0. So after a finite number

of iterations v, (^i'n) both b» and b. have "settled down." Suppose

b«, . . ., b- , have settled down, then if b- decreases indefinitely it eventually

goes negative. Then the cut generated at this point will imply a pivot on

some column strictly to the left of the i . In other words b. will decrease

strictly for some i < i which is a contradiction. Since the number of b's

is finite, the process terminates in a finite number of steps.

2. Basic Canonical Form.

We show in this section that any problem of form (1) or equivalently

(l1) can be represented in form (5). Assuming we have the problem

already in form (I1) we get an equivalent basic canonical form (5) to (I1) by

subtracting from the first row of the tableau an extra parameter t, ,, and

adding two extra equations;

x n+1 ~ " 'k+l

n+2 k+1

Since x , , and x ,_ are required to be non-negative, x , , , x .,, n+l n+2 ^ & ' n+1 n+2

and t, , must all equal zero in any feasible solution. We have then:

-8-

x0 =b0 + cOtO+ Cltl + + ^hc-^+l

(6)

xl = S

x2 = *! .

xk+l '■' ^

xk+2 = bk+2 + ak+2, 0*0 + ak+2, 1*1 + + ak+2, Ä

x = b + a „t. + a ,t, + + a.t, n n nO 0 nil nkTc

Xn+1 = " Vl-l

Xn+2 = + ^+1

We then perform the following changes of variables

(7) t. w=t,ll-(l+cn)tr.-... -(1-c. .)t. .-c.t.-c.-t.,,-... -c. t, J K+l x 0' 0 j-r j-1 j j j + 1 j + 1 kTc

for j = l,...,k+l and

new .. t + f.
0 k+l 0 0 j j k K

The transformations of variables are legitimate because the c.'s are

strictly negative; so, all the coefficients in the above equations are positive

or zero and the substitutions are column operations. Performing these

column operations we obtain the following form:

-9-

Max x- = b_

(8)

xl - l0 " . . ll ^

X^+Z = bk+2 + ak+2, 0*0 + ^+2, 1*1 +

' • W
+ ak+2,k+l*k+l

Xn+2 " bn+2 + an+2, 0*0 + an+2, 1*1 + + an+2,k+l*k+l

where for notational simplicity we do not distinguish typographically the

transformed coefficients and parameters of (8) from the old ones in (6).

To prove the equivalence of (8) and (6) it suffices to write down the inverse

transformation. In fact

.new

.new

^ew

.new

.new
•"k+l

Tableau (8) is a special case of the desired form (5) with the extra

feature that the new a..'s and b 's are zero in the lower left-hand
ij J

corner of the diagonal part of the matrix. The method given above is a

completely general method; however the extra variables were added only

to supply a coefficient of minus one in the functional. If one already exists,

say d = - 1, the same transformations (7) will work with k replaced by k-1.

The algorithm is illustrated by an example in Appendix B.

-10-

III. Solving a Special Subproblem for the Deepest Cut

We will now discuss a special problem with interesting properties,

which constitutes the basis for the deepest cut algorithm described in this

section.

1. The Deepest Cut Problem.

Let us consider the following problem: Find non-negative integers

x(j ^ 0), t., and maximize x_ , subject to:

x0 - bo - 'o

xl = bl + aioto - h
X2

= b2 + a20t0 + ^zih
(9)

h

^ = bk + ^.o^-' ^.l1^ +ak,k-lbk-l-tk

^+1 = "bk+l " ^+1,0*0 " ak+l, 1*1 " ^.k-lVl + ^

where all the b. (j ^ 0) and a., are non-negative integers.

It is not difficult to see that, given this structure, the lexico-

minimum of all t vectors generating feasible x's is a solution to the

problem. In order to make more apparent some properties of this

problem let us rewrite it for k = 3.

Find non-negative integers x.(j ^ 0) , t. and maximize x_,

subject to:

-11-

b0 = x0 + t0

bl = -»10*0 +xi + h

(10) b2 = " ^O'o ' a21tl + x2 + h

h3= " ^O^ " a31tl " a32t2 + x3 + t3

x4 = -b4 " a^O " ^1*1 " ^izh + t3

An equivalent statement of this problem is to consider the last

equation as the objective and find the lexico-min of all the vectors t

which make x4 non-negative. The solution of this problem is an optimal

solution to the initial problem. So, we have then

Objective: x4 = -b4 - a40t0 - a^^ - a42t2 - t3 .

The first of the equations of the system (the original functional) is not really

a constraint, since t- may be increased as much as necessary to achieve

primal feasibility. In order to make x4 feasible (keeping in mind that we

are seeking the lexico-min vector t), we will first increase t, as much

as possible, keeping other t. variables at zero value. This means, with

respect to the simplex method, making t- and x-, x,, x- basic.

If we did not succeed in reaching feasibility, we would want then to

increase t, keeping t- and t, at zero level if this can do some good,

i. e. , if the coefficient of t, in the adjusted "objective" (x4) is greater

than zero.

If increasing t^ as much as possible, (which is equivalent to

introducing t^ in the basis when using the simplex method) does not

suffice to make x4 > 0, it means that there is no solution with t- =t. =0.

We then continue the process with t, and then with t» if necessary.

-12-

Performing these operations, there will be some j such that making
*

t. basic will yield a non-negative value for x4 (the value of the adjusted

objective). This implies that there exist a solution to the problem with

to'h = t. , = 0, t. basic and assigning some values to basic

t. ,, t. 2» •••»*!, • ^ut we are seeking the lexico-min vector t and in-

creasing t. as far as possible is not necessarily required. There may
*

exist a value, say t., less than the value which is assigned to t. when

we make it basic, which should suffice to make x. reach feasibility.

(10)
In the case where k = 3 let j = 1

1) We introduce t-, in the basis then the "adjusted objective" be-

comes:

(11) x4 = x4 + x3 = (b3-b4) + (a30-a40)t0 + (a31-a41)t] + ^32 - a42)t2 - x3

2) Assume b_ - b4 < 0

If a,, - a4? is > 0, we then consider increasing the value of

t2 and the new "adjusted objective" will be the following linear combination

X4 = ^a32 " a42)x2 + x3 + X4 "

But let us suppose for the sake of this discussion that a,? - a42 < 0 .

3. We then consider increasing the value of t, (assuming

a31 ~a41 = ^1 '* <^' Increasing t, as far as possible (or making it basic

as in the simplex method) gives the following adjusted cost form

(12) x4 = x4 + x3 + nix1 = (nib1 + b3 - b4) + (IIjajQ + a30 - a40)t0 - x1

+ (a32 " a42)t2 " X3 *

Let us now assume that H.b, + b, - b4 > 0 that implies that giving

to t, the value b,. This is sufficient to make x, reach feasibility.

-13-'

But if we examine the relation (11) we see that it suffices to give to t, the

value

0*3 - bj

1 - a41 J 1

to make x4 feasible.

It is easy to see that the value t, is less than or equal to the value

assigned to t, basic. There t, is the minimum value for t, so that

there exist a solution to our problem with tn = 0; this will assure us that

t0 = 0 , t1 = t° , t2 = t° , t3 = t" (to fix)

is the lexico-min vector t which gives the solution of the problem, t? = 0

because the coefficient of t? was never positive in the successive "adjusted

cost forms."

In order to determine the value of t, we fix t«

and modify our constant column accordingly.

o, t1 = t°, t2 = t" = 0

¥3 =b3 + a30 ' 0 + a31tl +a32 ' 0

b4 =-b4- a40 . 0 - a41t1 + a42 . 0

Repeating the same operations as described above, it is not difficult to show

that t-, = -b. . This method is illustrated in Appendix B by an example.

Properties of the Deepest Cut Problem

1. The procedure suggested to solve the deepest cut problem is

exactly the procedure used in the basic algorithm for generating cuts.

-14-

2. The procedure gives the best cut for the equations of the system,

i. e., that given the criteria used for generating efficient cuts in the basic

algorithm, there is no better cut possible.

3. The technique leads in a sequence of k steps to the solution.

Each component of the vector t is considered once and only once to enter

the basis, i.e., if at iteration v(< k + j+ 1) the variable t. was not selected

for entering the basis, then for all the following iterations i/+ 1, i/ + 2, . • .

it will never be considered again.

In the case when k= 3, we have seen that if at iteration v+Z, t_ has

a negative coefficient, this coefficient always remains negative during the

solution process, t2 is never a candidate for entering the basis.

4. It is possible to give an upper bound for the number of steps, i. e.,

each variable t is considered only once for entering in the basis so the

number of iterations depends only on the size of the system and is in fact at

most k.

2. The Deep Cut Algorithm.

If rather than dealing with the basic canonical form we had the follow-

ing revised form:

Find non-negative integers x. and t. and maximize x» subject to

xo " bo " 'o

xl = bl + *()■.. *! ■ ■ . . .

''k+i = bk+i ' hs. ' ' VH

"k+Z = bk+2 + ak+2;0 *() + ak+2. I1! + + ^+2, k+lhc+l ~ ^+2

(13)

nO ^ + an. 1 tl + + an.k+l hc+l ' ^+2 x =b +a0 t^+a , 1,4- n n

Xn+3 ~ bn+3 + an+3, 0*0 + an+3, 1*1 + + ^+3^+1^+1 " ^+2

Xn+4 = "bn+4 ' an+4, 0*0 ' an+4, ih + " ^+4^+1^+1 + ^+2

15-

where all the a., and b. are positive (except b0), then a natural

algorithm, using the results of the last section, suggests itself.

In order to obtain the revised form, starting from the basic canonical

form (8), we subtract from the right-hand side of the equations

Xk+2 ^ bk+2 + ^+2, 0*0 + ak+2, 1*1 + + ak+2Ik+ltk+l
• • • • *
• • • • "
• • • * *
Xn+2 = bn+2 + an+2, 0*0 + an+2, 1*1 + + an+2, k+^k+l

a parameter t, , , and we add two equations

xn+3 = ~ ha+Z

xn+4 = + t!t+2

which have the property that t, ,, x 3, x . must all be equal to zero

in any feasible solution.

We then perform column operations in order to make the coefficient

of t«, t., t?, . . ., t, . positive (except for the coefficients which will

appear in the last row n+4). The equation generating the column opera-

tions has the form

(14) s^-ß^-ß^-ß^... -ßjtj + -/3k+1tk+1+tk+2

where ß. = -[min {a.. }] i = k+2, k+3, n+2, j = 1, 2, 3 k+ 1.
J i 1J

To fix ß we need some more information. We want the coefficients

of t« to be positive, but we want also to determine the coefficients of tn

so that when we substitute K« + t^ for t« (where Kn is an admissible

value for t0) the constant terms become non-negative.

16-

We know (when dealing with a maximization problem) that the optimal
o solution (x- T _) of the linear program is always greater than or equal to

the optimal solution (x» Tp) of the same problem but where integral values

have to be assigned to the variables.

o . o
x0 LP - x0 IP

but also

0 LP
> o
- 0 IP

let K„ -0 LP + b_ (initial. b0)

we have

+ x, 0 IP - t;

c
c0 LP < - b„ +

'0 > K0

so tn - K„ 4 t'. This means that the substitution K,, + tL for t„ is a u u u u ü 0

legitimate operation.

To choose /30 we will assure ourselves that the coefficients of t-*

become non-negative and also that when we perform the substitution (15),

described above, the constant term column will contain all non-negative

components (except, the last one).

ßp. = max -{- mm a,,, , max
i l0 i

r b-
-iO

i = k+2.,. . ., n+4

17-

After performing the column operation generated by (14), i.e., pivoting on

t, ,., we then add the cut k+2

s = -K0 + t0

and pivot on t-

This gives us the tableau (13), which is equivalent to our initial problem

with respect to the integer valued solution.

The Algorithm

The underlying procedure is equivalent to the basic algorithm method

but in this case there is only one negative constant term, b .. Each

"subproblem" will contain

1) the last row: n+4

2) one row of the set k+2, . . ., n+2 (the row n+3 is the opposite in

sign of the row n+4)

3) the diagonal part of the tableau.

This is exactly the structure of the deepest cut problem.

To generate the best cut for each sub-problem we can use the method

of the deepest cut problem.

And among those cuts select the best one, using the same criterion

as for the basic algorithm.

This algorithm can be used if, (1) the general problem can be brought

into the necessary form, and (2) it can be maintained in this form throughout

the pivot steps. Both operations can be performed although the maintenance

of non-negative coefficients below the diagonal does involve some number of

column operations. If we omit the maintenance of the non-negative coefficient,

we have the basic algorithm discussed in the first part of the paper. In that

case, we generate deep cuts but not the deepest cuts for the subproblems.

-18-

REFERENCES

Dantzig, G. B., L. R. Ford, Jr., and D. R. Fulkerson, "A Primal-

Dual Algorithm for Linear Programs, " Annals Study 38, "Linear

Inequalities and Related Systems, " Kuhn and Tucker, Eds. ,

Princeton University Press, 1956.

Gomory, Ralph, "All-Integer Integer Programming Algorithm, "

IBM Research Report RC-189, January I960.

\

APPENDIX A

In the following four figures a flow diagram for the basic algorithm is

given. Figure 1 tells us how to get the original problem in the form (1) into

(5). In Figure 2 we associate to each equation with a negative constant term

a linear combination of equations in which the coefficients of the rightmost

t's have been made non-positive. In Figure 3 we select the linear combina-

tion for which the last positive term is furthest from the left, and in Figure

4 we actually perform the "cut" associated with this equation. The algorithm

consists of repeating steps 2-4 until all the constant terms are non-negative.

1. CANONICAL FORM

No

Add -t, , to

functional and two
equations:

n+1 -t k+1

n+Z k+1

t! :
J

Yes

Rearrange columns

and rows c, = - 1

Set t. = t! where
J J

^k+i-^^V--- - ^j-^j-rVrViV- ■Vk

J — Uyaooy iQ"!" 1

Go on to

2. "DERIVED EQUATION"

2. DERIVED EQUATIONS

Yes1

*

"Oj = Cj
aij - aij

i = 1 n+ 2

j = 0,..., k

i = 1
j = K+ 1

i=i + 1

No

j:= j - 1

i:=i + 1

No

ß.: =ß, +a..ß.

a.. - a. t + a. -Q-.
li li ij jl

i = 0, K + 1

3. BEST CUT

Yes

.•N.

r.: = Max {j:d.. > 0 }

Yes' i

No

J = r.
i

I = i

i = i + 1

i: = i + 1

Yes

o-r- - {least integer > o-.. which is

divisible by aTT }

/?T =-{least integer > b. divisible

rzz
by aij >

ßr: = j3T / aT T a^. = 0

ali = ^Ij / ÖIJ
j = j + 1

4. SUBSTITUTION

''

i = 0 n + 2

bi = bi " hlQiJ

V

i = 0, . . . , n+ 2; j =0,. . .,

cj = cj " ^Ij^OJ

aij = aij " "ifiJ

k+ 2

CJ = a0J

aiJ = aiJ

\ f

Yes

RETURN TO 2

No

TERMINATE

APPENDIX B

Basic Algorithm:

The original problem

Max x^ = 10 - 2V • ti- h
xl = 'o
x2 = h
x3 = h
x4 = 26 + 'o- 3ti- 5t2

x5 = -12 + t0+ t1+ t2

Normally we use special methods to generate a - 1 in the objective form

but in this case this is not necessary.

Make the substitutions

new 2
0 t2 0 1

tneW = t + t + t tl ^2 0 1

.new
t2+ 'O

we then obtain

x0 =

xl =

x3 =

10

t0+ t

26 + 6t0 - 9t

-12 + t

+ t.

2t.

(S^ -15 + t0)

Appendix Page 2

To simplify the problem we make use of a convenient device. If we solve the

problem without the integer constraints we get Max xn = 9/12 . u Lp

Since xn the integer programming solution is maximized over a more uip

restricted set Max xft < Max xn . Therefore, Max x- < -5.
UIP ~ ULP UIP -

Since xn = 10 - tn to > + 15. This allows us to introduce the cut

S, = -15 + t0. Doing the appropriate pivot (essentially ^ : ='o " ^^ we

obtain:

Max x« =

x1 = 15 + t- - t

x3 = -15 t0+ t

x4 = 116 + 6t0 - 9t

xc = -12 + t

- t.

+ t.

2t.

We now start using the procedure of the basic algorithm. Beginning with

x3 = -15 " ^^l +t2

we make the rightmost positive coefficient zero by adding x^

x2 + x3= -15 -'O + 2tl

If we try to eliminate the t, coefficient by adding 2X, we obtain a non-

negative constant term. The last equation yields the cut

>■, = -8 + t1 <=> t1 > S1 .

Appendix B Page 3

Using xg = -12 + t, we try to eliminate t, but again the constant term goes

non-negative so the best we can do is S? = -12 + t,. The latter cut is better

so we introduce S, = -12 + t,. Completing the standard pivot operations our

tableau becomes

Max x0 = -5 - 'o
x, = 3 + to- t.

x2 = 12 h" h
X3 = -3 - t0 + t1+ t2

x4 - 8 + 6to- 9tl " 2t2

x5 = t.

here we have only one equation with a negative constant term which implies

the cut S, = -3 + t. + t? making the substitution we obtain the optimal

solution

x0 = -5 - 'o
x1 = 3 + to- h
x2 + 9 + 2t1 - h
x, + 0 - 'o + h
x4 = 2 + 6t0 - 7t1 -2t2

x5 = 0 + h

If we did not use the linear programming solution to generate the first cut

this cut would have been

Sl= -12+ ^

derived from the following linear combination: x, + x^. The tableau then

becomes:

Appendix B Page 4

x0 =

x1 =

x3 =

X4 =

12 + tr

-12 t0+ t

98 + 6t0 - 9t

x5 = = -12 + t

our best following cut is: S^ = -12 + t, derived from x,.

+ t.

- 2t.

It is not difficult to verify that no better cut is available. We then

obtain:

xo = -2 " 'o

x2= 12

to+ ti+ h
x4 = -10 + 6t0 - gtl - 2t2

x, = + t.

We then get the following cuts

S3 = -2 + t0

84 = -2 + t1 + t2

s5=-lft0

S6:z-1 +tl+t2

and obtain the same final tableau. It is interesting to see that this re-

quired 6 cuts where the previous method only required 3 cuts.

APPENDIX C

The Deepest Cut Problem:

Find non-negative integers x. {i = 1,2,3,4), t. (j = 1,2,3), and maximize x0

subject to:
x0 = 3 " *()

"OBJ"

Basic variables, x«, x., x_, x3.

xl = 1 + 'o - h
x2

= 3 + 2t0 + 2tl - 'z
x3 = 8 + 3t, + 6t2- H
X4

_ -26 - 'o -12t, - 3t2 + H

(a) We first ask is there a solution with t0,t1,t? = 0 ? Making t,

basic and increasing as far as we can to t, = 8 we get x4 = -18.

Eliminating t, from "OBJ" we obtain

x4 + X3 = -18 - t0 - 9tl + 3t2 .

(b) Since x4 with tn,t,,t- = 0 is = -18 we now allow t? to become

positive and require only that t0,t. = 0. Making t- basic and

eliminating from the "adjusted OBJ" we get

x4 + x, + 3x2 = -9 + 5t0 - 3t, .

(c) Since the coefficient of t, is negative in the current "OBJ"

introducing t, will only make the problem more infeasible.

(d) Finally, by making t0 > 2 we can make the problem feasible.

Since we want the lexico-minimum vector t we take tn = 2.

Appendix C Page 2

The values of the rest of the variables can be determined whether by

back substitution or by repeating the procedure with t0 no longer a variable

but fixed at 2, e.g., next try to make x4 feasible in

xo = 1

xl= 3 - 'l

X2 = 9 + 2tl " h
x3 = 8 + 3t1 + 6t2 - 4
x, = -28 - 12t, - 3t, - t- 4 12 3

Repeating the same process, we can fix t.; then t?, t, being fixed, and

so on.

The complete solution is

XQ-1 X.=3 X?=0 x, = 7 x4 = 0

t0 = 2 t1 = 0 t2 = 9 t3 = 55 .

Practically one can affect each row of a multiplier

T/J = l(OBJ), v* = 1. TT^ - (a32 - a42) - (6-3) = 3.

Tr| = Max |(-12 + 3 + 3TT2) = -3, 0 T =0.

which remains always the same and may be considered to some extent as

playing an identical rule to the simplex multipliers.

1-2

BASIC DISTRIBUTION LIST
FOR UNCLASSIFIED TECHNICAL REPORTS

Head, L.ogi.!Stics and Mathematical
Statistics Branch

Office of Naval Research
Washington 2,5, D. C.

CO., ONR Branch Office
Navy No, 100, Box 39, F.P.O.
New York City, New York

ASTIA Document Service Center
Arlington Hall Station
Arlington 1Z, Virginia

Institute for Defense Analyses
Communications Research Div.
von Neumann Hall
Princeton, New Jersey

Technical Information Officer
Naval Research Laboratory
Washington's, D-C.

CO., ONR Branch Office
346 Broadway, New York 13, NY
A tt n: J. La d e r ma. n

CO.. ONR Branc h Offi c e
1030 East Green Street
Pasa.dena 1, California
Attn; Dr. A. Ft- Laufer

Bureau of Supplies and Accounts
Code OW, Dept. of the Navy-
Washington 25, D.C.

Professor Russell Ackoff
Operations Research Group
Case Institute ct Technology
Cleveland 6, Ohio

Professor Kenneth J. Arrow
Serra House, Stanford University
Stanford^ California

Professor G. L. Bach
Carnegie Institute of T«chnology
Planning and Control of Industrial

Operations, Schenley Park
Pittsburgh 13, Pennsylvania

Professor A. Charne»
The Technologic».! Institute
Northwe stei"n Jniver a ity
Evanston, Illinois

Professor L. W. Cohen
Math. Dept. , University of Maryland
College Park, Maryland

Professor Donald Eckman
Director, Syeterns Research Center
Case Institute of Technology
Cleveland, Ohio

Professor Lawrence E. Fouraker
Department of Economics
The Pennsylvania State University
State College. Pennsylvania

Professor David Gale
Dept. of Math., Brown University
Providence 12, Rhode Island

Dr. Murray Geisler
The RAND Corporation
1700 Main Street
Santa Monica, California

Profeeeor L. Hurwicz
School of Business Administration
University of Minnesota
Minneapolis 14, Minnesota

Professor James R Jackson
Management Sciences Research

Project, Univ. of California
Los Angeles 24, California

Professor Samuel Karlin
Math. Dept-, Stanford University
Stanford, California

Professor CE. Lemke
Dept. of Mathematics
Rerv eei'i^r Polytechnic Institute
Troy, N1?.«' York

PvoiesBO', W.H. Marlow
logistic ;' Research Project
The George Washington University
70 7 - 22nd Street. N.W.
Waahltigton 7, D.C

Profesaos Oekar Morgenstern
Economics Research Project
Princeton University
92 A Nas-sav; Street.
Princeton, ;iew Jersey

2-2

BASIC DISTRIBUTION LIST
FOR UNCLASSIFIED TECHNICAL REPORTS

Professor R. Radner
Department of Economics
University of California
Berkeley, California

Professor Stanley Reiter
Department of Economics
Purdue University
Lafayette, Indiana

Professor Murray Rosenblatt
Department of Mathematics
Brown University
Providence 12, Rhode Island

Mr.J.R. Simpson
Bureau of Supplies and Accounts
Navy Department (Code W31)
Washington 25, DC

Professor A. W. Tucker
Department of Mathematics
Princeton University
Princeton, New Jersey

Professor J. Wolfowitz
Department of Mathematics
Lincoln Hall, Cornell University
Ithaca 1, New York

